Combining Multiple Feature-Ranking Techniques and Clustering of Variables for Feature Selection
نویسندگان
چکیده
منابع مشابه
Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملCombining Multiple Feature Selection Methods
This paper proposes a feature selection method that combines various feature selection techniques. Feature selection has been realized as one of the most important processes in various applications, especially pattern classification problems. When too many attributes are involved, training a machine to classify patterns into their respective classes is seemingly impossible. Hence, selecting goo...
متن کاملCombining multiple classifiers for wrapper feature selection
Wrapper feature selection methods are widely used to select relevant features. However, wrappers only use a single classifier. The downside to this approach is that each classifier will have its own biases and will therefore select very different features. In order to overcome the biases of individual classifiers, this study introduces a new data mining method called wrapper-based decision tree...
متن کاملAn Adaptive Multiple Feature Subset Method for Feature Ranking and Feature Selection
In this paper, we propose a new feature evaluation method that forms the basis for feature ranking and feature selection. The method starts by generating a number of feature subsets in a random fashion and evaluates features based on the derived subsets. It then proceeds in a number of stages. In each stage, it inputs the features whose ranks in the previous stage were above the median rank and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2947701